Skip to main content

Jaundice and Fever Following a Trip Abroad-eMedicine Case

Refreshing your mind for a sec, won't you?
For dentist ni narimasu-tachi, let's open your Clinic Pathology Lesson from your little grey cells. Yare-yare... I did answer the quiz wrong. Watashi wa damasareta. Ehehe... machigai chatta...
The quiz was taken from eMedicine case presentation.
Here we go:

Background
A 30-year-old man presents to the emergency department (ED) with fever, yellow eyes, and abdominal pain. The patient developed the fever, as well as chills and myalgia, approximately 5 days before presentation. He treated himself with antibiotics that he "had laying around the house," but there was no improvement in his condition. His fever remained high (up to 104°F [40°C]), and he later developed upper abdominal pain and decreased urine output. He denies having any diarrhea, vomiting, or respiratory symptoms. He reports no blood in his stool or urine. He has no significant medical or surgical history. He has no known allergies and is not currently taking medication. For the past year, the patient has been travelling between the United States and Equatorial Guinea. In fact, the patient recently returned from a 2-month trip to Equatorial Guinea last week. He denies smoking tobacco, consuming alcohol, or using illicit drugs.



On physical examination, he is ill-appearing but in no acute distress. His oral temperature is 103.6°F (39.8°C). His pulse is regular at a rate of 90 bpm, and he is mildly hypotensive, with a blood pressure of 85/45 mm Hg. His respiratory rate is rapid but unlabored at 28 breaths/min. Icteric sclerae are noted. His breath sounds are clear to auscultation. His S1 and S2 heart sounds are normal and there are no detectable murmurs. His abdomen is soft and normal active bowel sounds are heard. The liver is enlarged approximately 4 cm below the right costal margin and mildly tender. His spleen is not palpable. He is noted to have scattered petechiae on all extremities.

A complete blood cell count (CBC) shows a hemoglobin of 11 g/dL (110 g/L); a white blood cell (WBC) count of 5.9 × 103/μL (5.9 × 109/L), with 90% neutrophils, 2% lymphocytes, and 7% bands; and a platelet count of 9.0 × 103/μL (9.0 × 109/L). His blood chemistry reveals a blood urea nitrogen (BUN) of 43 mg/dL (15.35 mmol/L), a creatinine of 2.3 mg/dL (203.32 µmol/L), a total bilirubin of 8.2 mg/dL (140.22 µmol/L), an indirect bilirubin of 3.7 mg/dL (63.27 µmol/L), a direct bilirubin of 4.5 mg/dL (76.95 µmol/L), an alkaline phosphatase of 219 Units/L, an alanine aminotransferase (ALT) of 219 Units/L, and an aspartate aminotransferase (AST) of 225 Units/L. The hepatitis A IgG examination is positive, with a negative IgM. Both hepatitis B and C serologies are negative. Blood cultures are negative. A chest radiograph shows no abnormalities. Abdominal ultrasonography shows sludge in the gall bladder, with a fatty liver, but no space-occupying lesions, gallbladder wall thickening, or pericholecystic fluid are seen. A Giemsa-stained blood smear is obtained at the time of admission (see Figure 1, the blood smear is shown at 500× magnification).



What is the likely diagnosis?

Hint: The patient's travel history and blood smear are critical to the diagnosis.
a. Dengue fever
b. Malaria
c. Yellow fever
d. Hepatitis A

AND What is the Correct answer?
it is b. Malaria (I choose d. Hepatitis A >__<)

The differential diagnosis of acute febrile illness and hepatitis in a returning traveler must at least include the following tropical infections: malaria, dengue fever, hepatitis A, mononucleosis, rickettsial infection, and salmonellosis.[1] A moderately elevated ALT (3-10 times the upper limit) can be observed in these tropical diseases,[2] and unconjugated hyperbilirubinemia might be seen more often in malaria[2,3]; however, these findings are not specific. Specific diagnostic tests are therefore necessary to confirm or exclude each infection when suspected. This patient's Giemsa-stained blood smears revealed numerous ring-shaped trophozoites in normal-sized red blood cells (RBCs) consistent with Plasmodium falciparum. Parasitemia was detected in 12% of the RBCs. This confirmed the diagnosis of malaria, an infection of the RBCs by the parasitic Plasmodium species, which is acquired from the bite of an infected female Anopheles mosquito.

Malaria is the most important cause of acute febrile illness in travelers returning from endemic areas.[1] Between 1996 and 2006, there were approximately 1,400 cases of malaria per year reported in the US.[4] Almost all reported cases in 2006 were diagnosed in travelers returning from Africa (West Africa), Asia (India), Central America and the Caribbean (the Bahamas, Belize, Costa Rica), South America (Bolivia, Brazil, Ecuador), or Mexico. The four Plasmodium species that cause most human infections are P. falciparum, P. vivax, P. ovale, and P. malariae. In reports from the Centers for Disease Control and Prevention (CDC) between 2004 and 2006, P. falciparum and P. vivax were identified in 60% and 30% of reported cases, respectively. The geographic distribution of each species is different. P. falciparum is more likely to be identified in infected travelers returning from Africa, whereas P. vivax is more likely to be identified in travelers returning from Asia, Central America, the Caribbean, or South America. Species identification is important because P. falciparum can rapidly progress and cause severe disease. The CDC reported 217 malaria-related deaths in the United States between 1963 and 2006[10]; more than 90% of reported deaths were from P. falciparum infection.

The incubation period is greater than 1 week, and 80% of patients with malaria report symptoms within 30 days of returning from an endemic region. Ninety percent of patients with P. falciparum reported symptoms within 30 days of returning from an endemic region, whereas only 54% of cases with P. vivax did so. The symptoms of uncomplicated malaria are nonspecific and include fever, headache, back pain, malaise, chills, rigors, sweating, myalgia, nausea, vomiting, diarrhea, and cough.[5] Patients with severe malaria present with a number of clinical or laboratory manifestations, including prostration, impaired consciousness or seizures (in cases of cerebral malaria), respiratory distress, circulatory shock, pulmonary edema, abnormal bleeding, jaundice, hemoglobinuria (hence the name "Blackwater fever"), severe anemia, hypoglycemia, acidosis, renal impairment, hyperlactatemia, disseminated intravascular coagulation, and parasitemia higher than 5%.

Microscopic analysis of blood smears is the most definitive test for confirming the diagnosis of malaria.[4-7] Both thick and thin blood smears must be performed in travelers with acute febrile illness returning from endemic areas. The test should be repeated at 12-hour intervals for 48-72 hours if the diagnosis is not established by the first smear examination. Blood smears can also help in identifying the infecting species; however, accurate identification of the particular species is greatly reliant on the pathologist's level of experience. Parasitemia, or parasite density (which is a percentage of infected erythrocytes), is obtained by counting infected RBCs on a thin film. The parasite density is essential to diagnose severe malaria and to monitor treatment outcome. Rapid diagnostic tests (RDTs) are an alternative to the blood smear. These tests are particularly useful in patients who were treated abroad without a parasitic diagnosis.[6,7] Several US Food and Drug Administration (FDA)–approved commercial kits are available for the detection of malarial antigens and for differentiating P. falciparum from the other 3 species. Rapid diagnostic tests, however, can be inaccurate in cases with a low number of parasites and cannot quantify the parasite density, which is one of the prognostic indicators. Clinicians not only need to identify the infecting species, but they should also know the regions that are endemic for drug-resistant malaria.[5] P. falciparum from endemic areas is resistant to chloroquine, except for that found in the regions of Central America west of the Panama Canal, Mexico, Hispaniola, parts of China, and the Middle East. Except for particular areas of Papua New Guinea and Indonesia, P. vivax and P. ovale remain sensitive to chloroquine. Quinine plus tetracycline, doxycycline, or clindamycin is required for the oral treatment of malaria acquired in these endemic areas. This combination therapy is necessary to improve the treatment outcome and to prevent the development of resistance to each component of the combination. If the species cannot be identified, the clinician should initiate treatment for P. falciparum until proven otherwise.

The first-line agents for severe P. falciparum malaria in the United States are intravenous quinidine plus tetracycline, doxycycline, or clindamycin.[5] Quinidine infusion should be administered in an intensive care unit with continuous cardiac monitoring. After the parasite density becomes less than 1% and patients can take oral medication, quinidine can be substituted with an oral quinine regimen. Clinical trials of the quinine-based regimen for severe malaria have reported a mortality of 15-20%. Higher mortality figures were seen in patients with cerebral malaria or with renal failure; therefore, early supportive treatment in an intensive care unit is necessary for patients with severe malaria. An alternative regimen, which has been shown to be superior to the quinine-based regimen in several clinical trials, is artesunate plus atovaquone-proguanil, doxycycline, or mefloquine.[8] This artemisinin derivative rapidly clears parasites and is now a key component of malaria treatment worldwide. In the United States, artesunate is an investigational drug available from the CDC. Although rarely done, the CDC also recommends considering an exchange transfusion for patients with parasitemia higher than 10%, cerebral malaria, acute respiratory distress syndrome (ARDS), or renal compromise.[5,9]

Deaths from malaria in the United States share certain characteristics. These patients usually have at least 1 criteria of severe malaria (often, cerebral malaria), and they usually expire within 4 days of admission. Factors contributing to malaria-related death are failure to take or adhere to chemoprophylaxis, inappropriate chemoprophylaxis, delay in seeking medical care for post-travel illness, failure to promptly diagnose and treat malaria, and inappropriate treatment for severe malaria. Chemoprophylaxis, prompt diagnosis, and early appropriate treatment are the keys to decreasing the high mortality seen in cases of severe malaria.

In this case, the patient was quickly diagnosed on admission because of his travel history to an endemic area, clinical presentation consistent with severe malaria, and laboratory finding of intraerythrocytic trophozoites. Because quinidine was not immediately available, oral quinine and doxycycline were started after communication with the CDC. He did not require mechanical ventilation or hemodialysis. His parasitemia decreased to 3% after 3 days of oral antimalarial treatment, and his clinical condition gradually improved. Both his platelet count and renal function returned to normal. The patient had a complete recovery after 7 days of treatment with quinine and doxycycline.

TEST:
You are evaluating a patient who recently returned from Kenya and is experiencing high fevers, myalgia, and jaundice, which raises the concern for malaria. What is the most definitive test for establishing the diagnosis of malaria?
a. Giemsa-staine blood smears
b. Erythrocyte sedimentation rate
c. Rapid diagnostic antigen tests
d. Blood culture

The above mentioned patient is confirmed to be infected with P. falciparum. What is the first-line treatment of severe P. falciparum malaria in the US?
a. Chloroquine phosphate plus tetracycline
b. Mefloquine plus azithromycin
c. Quinidine gluconate plus doxycycline
d. Atovaquone plus proguanil

Comments

Popular posts from this blog

Bahasa Tertunda pada Anak Usia 2 Tahun

L anguage and communication! Yeah, that are two basic thing that are needed badly by human. No lives exist without that things. Language is complex issue, relating to physical, psychological, physiological, and cultural. Language does develop since our first contact with our very first environment, include since in our mother womb. This article emphasizes to the language delay to the kids living in the institutions. Bahasa mengacu baik pada kapasitas manusia secara spesifik yang bersifat dapatan dan digunakan sebagai sistem kompleks komunikasi, atau untuk hal spesifik seperti sistem komunikasi kompleks. Bahasa mempunyai banyak fungsi dan kompleksitas. Tiga fungsi dasar bahasa adalah untuk informasi, ekspresi dan instruksi. Bahasa bukan sesuatu yang diturunkan, tetapi harus dipelajari oleh subjek selama bersinggungan dengan lingkungannya. Makin cepat mereka dimasukkan ke tempat pembinaan makin baik, simpul sebuah penelitian. Oleh Robert Preidt Jumat, Juni 17, 2011 Tertaut Halaman Med...

Obat dengan Risiko Jantung pada Individu Diabetik Geriatri

P eneliti menemukan risiko yang lebih rendah dengan metformin, tetapi para ahli menyatakan penelitian itu bukan akhir. Penelitian terbaru menunjukkan individu yang lebih tua (selanjutnya disebut geriatri) yang mempunyai diabetes tipe 2 yang meminum obat golongan sulfonilurea untuk menurunkan kadar gula darahnya ternyata mempunyai risiko yang lebih tinggi terjenak masalah jantung daripada mereka yang minum golongan metformin. Lebih dari 8.500 individu berusia 65 tahun ke atas yang mengidap diabetes tipe 2 mengikuti penelitian ini, dan 12,4% dari mereka yang diberi sulfonilurea mengalami serangan jantung ataupun cardiovascular events lainnya, dibandingkan dengan mereka yang yang meminum metformin (10,4%). Sebagai tambahan, masalah jantung ini bermula lebih awal selama perjalanan perawatan pada mereka yang menerima obat sulfonilurea. Penelitian bandingan head-to-head dipresentasikan pada pertemuan tahunan American Diabetes Association (ADA) di San Diego. Karena penemuan ini hend...

Kepekaan Lidah Terhadap Lemak VS Kecenderungan Gemuk

Source: ovealiz.wordpress.com M akanan yang kaya lemak seperti es krim dan salad bermayo menggoda banyak orang, tetapi terdapat bukri baru yang mengindikasikan bahwa beberapa orang sebenarnya bisa “merasakan” lemak yang tersembunyi dalam makanan dan mereka yang tidak bisa melakukannya mempunyai kecenderungan memakan lebih banyak makanan kaya lemak tersebut. Dalam presentasi penelitian berseri yang dilakukan oleh Institusi Teknologi Makanan pada pertemuan tahunan Juni 2011 ini, peneliti menjelaskan mengenai penelitian lambat laun mendukung ide bahwa lemak dan asam lemak dapat dicicip, meskipun ‘rasa’ tersebut dideteksi sebagian besar melalui indera penciuman dan tekstur. Individu yang tidak dapat merasakan lemak mempunyai variansi genetik mengenai cara mereka memproses makanan yang kemudian kemungkinan mengarah kepada ngemil makanan berlemak secara tidak sadar. “Mereka yang lebih sensitif terhadap kandungan lemak lebih gampang mengontrol diet mereka”, kata Kathleen L. Keller, r...

Penelitian Hubungan Antara Penyakit Periodontal dengan Komplikasi Kehamilan

smilevancouver.ca Oleh Yiorgos A. Bobetsis, DDS, PhD; Silvana P. Barros, DDS, PhD; Steven Offenbacher, DDS, PhD, MMSc JADA 2006;137(10 supplement):7S-13S. INTISARI Latar Belakang. Bukti yang bertambah banyak menyatakan bahwa gingivitis dan periodontitis maternal merupakan faktor risiko terjadinya lahir prematur dan kelainan kelahiran. Tipe Penelitian yang Diulas . Untuk mengklarifikasi mekanisme yang memungkinkan antara penyakit periodontal dan kelahiran prematur, peneliti meninjau penelitian mengenai efek infeksi patogen periodontal pada hewan coba terhadap keturunannya, termasuk pertumbuhan fetus, abnormalitas struktural plasenta dan kesehatan neonatus. Setelah laporan pertama, pada tahun 1996, mengenai hubungan potensial antara penyakit periodontal ibu dan kelahiran prematur atau bayi lahir berat rendah pada manusia, beberapa penelitian case control dan prospektif telah dipublikasikan. Ulasan ini mengikhtisarkan hal-hal tersebut, dan juga penelitian terdahulu mengenai...

Diabetes Mellitus Neonatal Permanen (Permanent Neonatal Diabetes Mellitus, PNDM)

Apa itu diabetes mellitus neonatal permanen? Diabetes mellitus neonatal permanen adalah tipe diabetes yang pertama kali terlihat pada usia 6 bulan dan terus ada sepanjang hidup. Tipa diabetes ini ditandai dengan adanya kadar gula darah yang tinggi (hiperglikemia) yang disebabkan kurangnya hormon insulin. Insulin mengontrol berapa banyak glukosa (tipe gula) yang melewati darah menuju sel yang diubah menjadi energi. Individu yang menderita diabetes mellitus neonatal permanen mengalami pertumbuhan yang lambat sebelum lahir (retardasi pertumbuhan intrauterin). Balita yang terkena mengalami hiperglikemia dan hilangnya cairan dalam jumlah besar (dehidrasi) dan tidak mampu menaikkan berat badannya secara normal. Dalam beberapa kasus, individu yang mengalami diabetes mellitus neonatal permanen akan mengalami masalah neurologis, termasuk pertumbuhan yang tertunda dan kejang berulang (epilepsi). Kombinasi antara pertumbuhan yang tertunda, epilepsi, dan diabetes neonatal disebut sindrom DEND...